Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381602

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for 31% of all deaths globally. Myocardial ischemia-reperfusion injury (IRI), a common complication of CVDs, is a major cause of mortality and morbidity. Studies have shown efficacious use of mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) to mitigate IRI in animals, but few research has been done on human-related models. In this study, human embryonic stem cell-derived chambered cardiac organoid (CCOs) was used as a model system to study the effects of MSC-derived small extracellular vesicles (sEVs) on myocardial IRI. The results revealed that MSC-sEVs treatment reduced apoptosis and improved contraction resumption of the CCOs. Metabolomics analysis showed that this effect could be attributed to sEVs' ability to prevent the accumulation of unsaturated very long chain fatty acids (VLCFAs). This was corroborated when inhibition of fatty acid synthase (FASN), which was reported to reduce VLCFAs, produced a similar protective effect to sEVs. Overall, this study uncovered the mechanistic role of sEVs in mitigating IRI that involves preventing the accumulation of unsaturated VLCFA, decreasing cell death, and improving contraction resumption in CCOs.

2.
Mol Ther ; 32(3): 580-608, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38291757

RESUMO

Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Humanos , RNA , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia
3.
Aging Dis ; 15(2): 503-516, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815912

RESUMO

Aging is a complex physiological process encompassing both physical and cognitive decline over time. This intricate process is governed by a multitude of hallmarks and pathways, which collectively contribute to the emergence of numerous age-related diseases. In response to the remarkable increase in human life expectancy, there has been a substantial rise in research focusing on the development of anti-aging therapies and pharmacological interventions. Mitochondrial dysfunction, a critical factor in the aging process, significantly impacts overall cellular health. In this extensive review, we will explore the contemporary landscape of anti-aging strategies, placing particular emphasis on the promising potential of mitotherapy as a ground-breaking approach to counteract the aging process. Moreover, we will investigate the successful application of mitochondrial transplantation in both animal models and clinical trials, emphasizing its translational potential. Finally, we will discuss the inherent challenges and future possibilities of mitotherapy within the realm of aging research and intervention.


Assuntos
Envelhecimento , Rejuvenescimento , Animais , Humanos , Rejuvenescimento/fisiologia , Envelhecimento/fisiologia , Mitocôndrias/metabolismo , Proteômica
4.
Stem Cell Res Ther ; 14(1): 367, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093391

RESUMO

BACKGROUND: Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for cardiac disease modelling, drug discovery and regenerative medicine. Despite the advancement in various differentiation protocols, the heterogeneity of the generated population composed of diverse cardiac subtypes poses a significant challenge to their practical applications. Mixed populations of cardiac subtypes can compromise disease modelling and drug discovery, while transplanting them may lead to undesired arrhythmias as they may not integrate and synchronize with the host tissue's contractility. It is therefore crucial to identify cell surface markers that could enable high purity of ventricular CMs for subsequent applications. METHODS: By exploiting the fact that immature CMs expressing myosin light chain 2A (MLC2A) will gradually express myosin light chain 2 V (MLC2V) protein as they mature towards ventricular fate, we isolated signal regulatory protein alpha (SIRPA)-positive CMs expressing intracellular MLC2A or MLC2V using MARIS (method for analysing RNA following intracellular sorting). Subsequently, RNA sequencing analysis was performed to examine the gene expression profile of MLC2A + and MLC2V + sorted CMs. We identified genes that were significantly up-regulated in MLC2V + samples to be potential surface marker candidates for ventricular specification. To validate these surface markers, we performed immunostaining and western blot analysis to measure MLC2A and MLC2V protein expressions in SIRPA + CMs that were either positive or negative for the putative surface markers, JAK2 (Janus kinase 2) or CD200. We then characterized the electrophysiological properties of surface marker-sorted CMs, using fluo-4 AM, a green-fluorescent calcium indicator, to measure the cellular calcium transient at the single cell level. For functional validation, we investigated the response of the surface marker-sorted CMs to vernakalant, an atrial-selective anti-arrhythmic agent. RESULTS: In this study, while JAK2 and CD200 were identified as potential surface markers for the purification of ventricular-like CMs, the SIRPA+/JAK2+ population showed a higher percentage of MLC2V-expressing cells (~ 90%) compared to SIRPA+/CD200+ population (~ 75%). SIRPA+/JAK2+ sorted CMs exhibited ventricular-like electrophysiological properties, including slower beating rate, slower calcium depolarization and longer calcium repolarization duration. Importantly, vernakalant had limited to no significant effect on the calcium repolarization duration of SIRPA+/JAK2+ population, indicating their enrichment for ventricular-like CMs. CONCLUSION: Our study lays the groundwork for the identification of cardiac subtype surface markers that allow purification of cardiomyocyte sub-populations. Our findings suggest that JAK2 can be employed as a cell surface marker for enrichment of hPSC-derived ventricular-like CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia , Cálcio/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo
6.
Stem Cell Res Ther ; 13(1): 529, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544188

RESUMO

BACKGROUND: Tissue organoids generated from human pluripotent stem cells are valuable tools for disease modelling and to understand developmental processes. While recent progress in human cardiac organoids revealed the ability of these stem cell-derived organoids to self-organize and intrinsically formed chamber-like structure containing a central cavity, it remained unclear the processes involved that enabled such chamber formation. METHODS: Chambered cardiac organoids (CCOs) differentiated from human embryonic stem cells (H7) were generated by modulation of Wnt/ß-catenin signalling under fully defined conditions, and several growth factors essential for cardiac progenitor expansion. Transcriptomic profiling of day 8, day 14 and day 21 CCOs was performed by quantitative PCR and single-cell RNA sequencing. Endothelin-1 (EDN1) known to induce oxidative stress in cardiomyocytes was used to induce cardiac hypertrophy in CCOs in vitro. Functional characterization of cardiomyocyte contractile machinery was performed by immunofluorescence staining and analysis of brightfield and fluorescent video recordings. Quantitative PCR values between groups were compared using two-tailed Student's t tests. Cardiac organoid parameters comparison between groups was performed using two-tailed Mann-Whitney U test when sample size is small; otherwise, Welch's t test was used. Comparison of calcium kinetics parameters derived from the fluorescent data was performed using two-tailed Student's t tests. RESULTS: Importantly, we demonstrated that a threshold number of cardiac progenitor was essential to line the circumference of the inner cavity to ensure proper formation of a chamber within the organoid. Single-cell RNA sequencing revealed improved maturation over a time course, as evidenced from increased mRNA expression of cardiomyocyte maturation genes, ion channel genes and a metabolic shift from glycolysis to fatty acid ß-oxidation. Functionally, CCOs recapitulated clinical cardiac hypertrophy by exhibiting thickened chamber walls, reduced fractional shortening, and increased myofibrillar disarray upon treatment with EDN1. Furthermore, electrophysiological assessment of calcium transients displayed tachyarrhythmic phenotype observed as a consequence of rapid depolarization occurring prior to a complete repolarization. CONCLUSIONS: Our findings shed novel insights into the role of progenitors in CCO formation and pave the way for the robust generation of cardiac organoids, as a platform for future applications in disease modelling and drug screening in vitro.


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Doenças Cardiovasculares/metabolismo , Cálcio/metabolismo , Organoides/metabolismo , Diferenciação Celular/fisiologia , Miócitos Cardíacos/metabolismo , Cardiomegalia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo
7.
Acta Pharm Sin B ; 12(10): 3905-3923, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36213535

RESUMO

Cytochrome P4502J2 (CYP2J2) metabolizes arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acids (EETs). Dronedarone, an antiarrhythmic drug prescribed for treatment of atrial fibrillation (AF) induces cardiac adverse effects (AEs) with poorly understood mechanisms. We previously demonstrated that dronedarone inactivates CYP2J2 potently and irreversibly, disrupts AA-EET pathway leading to cardiac mitochondrial toxicity rescuable via EET enrichment. In this study, we investigated if mitigation of CYP2J2 inhibition prevents dronedarone-induced cardiac AEs. We first synthesized a deuterated analogue of dronedarone (termed poyendarone) and demonstrated that it neither inactivates CYP2J2, disrupts AA-EETs metabolism nor causes cardiac mitochondrial toxicity in vitro. Our patch-clamp experiments demonstrated that pharmacoelectrophysiology of dronedarone is unaffected by deuteration. Next, we show that dronedarone treatment or CYP2J2 knockdown in spontaneously beating cardiomyocytes indicative of depleted CYP2J2 activity exacerbates beat-to-beat (BTB) variability reflective of proarrhythmic phenotype. In contrast, poyendarone treatment yields significantly lower BTB variability compared to dronedarone in cardiomyocytes indicative of preserved CYP2J2 activity. Importantly, poyendarone and dronedarone display similar antiarrhythmic properties in the canine model of persistent AF, while poyendarone substantially reduces beat-to-beat variability of repolarization duration suggestive of diminished proarrhythmic risk. Our findings prove that deuteration of dronedarone prevents CYP2J2 inactivation and mitigates dronedarone-induced cardiac AEs.

8.
Biomedicines ; 10(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35884846

RESUMO

The COVID-19 pandemic has driven the scientific community to adopt an efficient and reliable model that could keep up with the infectious disease arms race. Coinciding with the pandemic, three dimensional (3D) human organoids technology has also gained traction in the field of infectious disease. An in vitro construct that can closely resemble the in vivo organ, organoid technology could bridge the gap between the traditional two-dimensional (2D) cell culture and animal models. By harnessing the multi-lineage characteristic of the organoid that allows for the recapitulation of the organotypic structure and functions, 3D human organoids have emerged as an essential tool in the field of infectious disease research. In this review, we will be providing a comparison between conventional systems and organoid models. We will also be highlighting how organoids played a role in modelling common infectious diseases and molecular mechanisms behind the pathogenesis of causative agents. Additionally, we present the limitations associated with the current organoid models and innovative strategies that could resolve these shortcomings.

9.
Stem Cell Reports ; 17(8): 1810-1823, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35839773

RESUMO

Accurate modeling of the heart electrophysiology to predict arrhythmia susceptibility remains a challenge. Current electrophysiological analyses are hypothesis-driven models drawing conclusions from changes in a small subset of electrophysiological parameters because of the difficulty of handling and understanding large datasets. Thus, we develop a framework to train machine learning classifiers to distinguish between healthy and arrhythmic cardiomyocytes using their calcium cycling properties. By training machine learning classifiers on a generated dataset containing a total of 3,003 healthy derived cardiomyocytes and their various arrhythmic states, the multi-class models achieved >90% accuracy in predicting arrhythmia presence and type. We also demonstrate that a binary classifier trained to distinguish cardiotoxic arrhythmia from healthy electrophysiology could determine the key biological changes associated with that specific arrhythmia. Therefore, machine learning algorithms can be used to characterize underlying arrhythmic patterns in samples to improve in vitro preclinical models and complement current in vivo systems.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Arritmias Cardíacas , Cálcio , Humanos , Aprendizado de Máquina
10.
Front Cell Dev Biol ; 9: 788955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926467

RESUMO

Medical research in the recent years has achieved significant progress due to the increasing prominence of organoid technology. Various developed tissue organoids bridge the limitations of conventional 2D cell culture and animal models by recapitulating in vivo cellular complexity. Current 3D cardiac organoid cultures have shown their utility in modelling key developmental hallmarks of heart organogenesis, but the complexity of the organ demands a more versatile model that can investigate more fundamental parameters, such as structure, organization and compartmentalization of a functioning heart. This review will cover the prominence of cardiac organoids in recent research, unpack current in vitro 3D models of the developing heart and look into the prospect of developing physiologically appropriate cardiac organoids with translational applicability. In addition, we discuss some of the limitations of existing cardiac organoid models in modelling embryonic development of the heart and manifestation of cardiac diseases.

11.
Stem Cell Reports ; 16(12): 2928-2941, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34767749

RESUMO

The immature characteristics and metabolic phenotypes of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) restrict their applications for disease modeling, drug discovery, and cell-based therapy. Leveraging on the metabolic shifts from glycolysis to fatty acid oxidation as CMs mature, a human hexokinase1-GFP metabolic reporter cell line (H7 HK1-GFP) was generated to facilitate the isolation of fetal or more matured hPSC-CMs. RNA sequencing of fetal versus more matured CMs uncovered a potential role of interferon-signaling pathway in regulating CM maturation. Indeed, IFN-γ-treated CMs resulted in an upregulation of the JAK-STAT pathway, which was found to be associated with increased expression of CM maturation genes, shift from MYH6 to MYH7 expression, and improved sarcomeric structure. Functionally, IFN-γ-treated CMs exhibited a more matured electrophysiological profile, such as increased calcium dynamics and action potential upstroke velocity, demonstrated through calcium imaging and MEA. Expectedly, the functional improvements were nullified with a JAK-STAT inhibitor, ruxolitinib.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Janus Quinases/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Regulação para Cima , Sistemas CRISPR-Cas/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
12.
J Transl Med ; 19(1): 83, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602284

RESUMO

The skin is made up of a plethora of cells arranged in multiple layers with complex and intricate vascular networks, creating a dynamic microenvironment of cells-to-matrix interactions. With limited donor sites, engineered skin substitute has been in high demand for many therapeutic purposes. Over the years, remarkable progress has occurred in the skin tissue-engineering field to develop skin grafts highly similar to native tissue. However, the major hurdle to successful engraftment is the incorporation of functional vasculature to provide essential nutrients and oxygen supply to the embedded cells. Limitations of traditional tissue engineering have driven the rapid development of vascularized skin tissue production, leading to new technologies such as 3D bioprinting, nano-fabrication and micro-patterning using hydrogel based-scaffold. In particular, the key hope to bioprinting would be the generation of interconnected functional vessels, coupled with the addition of specific cell types to mimic the biological and architectural complexity of the native skin environment. Additionally, stem cells have been gaining interest due to their highly regenerative potential and participation in wound healing. This review briefly summarizes the current cell therapies used in skin regeneration with a focus on the importance of vascularization and recent progress in 3D fabrication approaches to generate vascularized network in the skin tissue graft.


Assuntos
Bioimpressão , Terapia Baseada em Transplante de Células e Tecidos , Regeneração , Pele , Engenharia Tecidual , Alicerces Teciduais , Cicatrização
13.
Cell Death Differ ; 28(4): 1379-1397, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33184465

RESUMO

Motor neurons (MNs) are highly energetic cells and recent studies suggest that altered energy metabolism precede MN loss in amyotrophic lateral sclerosis (ALS), an age-onset neurodegenerative disease. However, clear mechanistic insights linking altered metabolism and MN death are still missing. In this study, induced pluripotent stem cells from healthy controls, familial ALS, and sporadic ALS patients were differentiated toward spinal MNs, cortical neurons, and cardiomyocytes. Metabolic flux analyses reveal an MN-specific deficiency in mitochondrial respiration in ALS. Intriguingly, all forms of familial and sporadic ALS MNs tested in our study exhibited similar defective metabolic profiles, which were attributed to hyper-acetylation of mitochondrial proteins. In the mitochondria, Sirtuin-3 (SIRT3) functions as a mitochondrial deacetylase to maintain mitochondrial function and integrity. We found that activating SIRT3 using nicotinamide or a small molecule activator reversed the defective metabolic profiles in all our ALS MNs, as well as correct a constellation of ALS-associated phenotypes.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Sirtuína 3/genética , Animais , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios Motores/ultraestrutura , Sirtuína 3/metabolismo
14.
Nat Commun ; 11(1): 5425, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110077

RESUMO

Transcription factors are key protein effectors in the regulation of gene transcription, and in many cases their activity is regulated via a complex network of protein-protein interactions (PPI). The chemical modulation of transcription factor activity is a long-standing goal in drug discovery but hampered by the difficulties associated with the targeting of PPIs, in particular when extended and flat protein interfaces are involved. Peptidomimetics have been applied to inhibit PPIs, however with variable success, as for certain interfaces the mimicry of a single secondary structure element is insufficient to obtain high binding affinities. Here, we describe the design and characterization of a stabilized protein tertiary structure that acts as an inhibitor of the interaction between the transcription factor TEAD and its co-repressor VGL4, both playing a central role in the Hippo signalling pathway. Modification of the inhibitor with a cell-penetrating entity yielded a cell-permeable proteomimetic that activates cell proliferation via regulation of the Hippo pathway, highlighting the potential of protein tertiary structure mimetics as an emerging class of PPI modulators.


Assuntos
Peptidomiméticos , Fatores de Transcrição/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Via de Sinalização Hippo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
J Mol Med (Berl) ; 98(5): 615-632, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198625

RESUMO

The rapid advancement of genome editing technologies has opened up new possibilities in the field of medicine. Nuclease-based techniques such as the CRISPR/Cas9 system are now used to target genetically linked disorders that were previously hard-to-treat. The CRISPR/Cas9 gene editing approach wields several advantages over its contemporary editing systems, notably in the ease of component design, implementation and the option of multiplex genome editing. While results from the early phase clinical trials have been encouraging, the small patient population recruited into these trials hinders a conclusive assessment on the safety aspects of the CRISPR/Cas9 therapy. Potential safety concerns include the lack of fidelity in the CRISPR/Cas9 system which may lead to unintended DNA modifications at non-targeted gene loci. This review focuses modifications to the CRISPR/Cas9 components that can mitigate off-target effects in in vitro and preclinical models and its translatability to gene therapy in patient populations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Animais , Reparo do DNA , Gerenciamento Clínico , Regulação da Expressão Gênica , Marcação de Genes , Predisposição Genética para Doença , Terapia Genética/métodos , Humanos , MicroRNAs/genética , Modelos Animais , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos
16.
Cell Death Dis ; 11(3): 182, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170107

RESUMO

Mutations in mitochondrial DNA (mtDNA), typically maternally inherited, can result in severe neurological conditions. There is currently no cure for mitochondrial DNA diseases and treatments focus on management of the symptoms rather than correcting the defects downstream of the mtDNA mutation. Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is one such mitochondrial disease that affects many bodily systems, particularly the central nervous system and skeletal muscles. Given the motor deficits seen in MELAS patients, we investigate the contribution of motor neuron pathology to MELAS. Using a spinal cord organoid system derived from induced pluripotent stem cells of a MELAS patient, as well as its isogenically corrected control, we found that high levels of Notch signaling underlie neurogenesis delays and neurite outgrowth defects that are associated with MELAS neural cultures. Furthermore, we demonstrate that the gamma-secretase inhibitor DAPT can reverse these neurodevelopmental defects.


Assuntos
Síndrome MELAS/genética , Doenças do Sistema Nervoso/genética , Neurônios/metabolismo , Organoides/metabolismo , Humanos
17.
Stem Cell Res Ther ; 11(1): 138, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216837

RESUMO

The versatility of pluripotent stem cells, attributable to their unlimited self-renewal capacity and plasticity, has sparked a considerable interest for potential application in regenerative medicine. Over the past decade, the concept of replenishing the lost cardiomyocytes, the crux of the matter in ischemic heart disease, with pluripotent stem cell-derived cardiomyocytes (PSC-CM) has been validated with promising pre-clinical results. Nevertheless, clinical translation was hemmed in by limitations such as immature cardiac properties, long-term engraftment, graft-associated arrhythmias, immunogenicity, and risk of tumorigenicity. The continuous progress of stem cell-based cardiac therapy, incorporated with tissue engineering strategies and delivery of cardio-protective exosomes, provides an optimistic outlook on the development of curative treatment for heart failure. This review provides an overview and current status of stem cell-based therapy for heart regeneration, with particular focus on the use of PSC-CM. In addition, we also highlight the associated challenges in clinical application and discuss the potential strategies in developing successful cardiac-regenerative therapy.


Assuntos
Isquemia Miocárdica , Células-Tronco Pluripotentes , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Miócitos Cardíacos , Medicina Regenerativa
18.
Stem Cell Res Ther ; 10(1): 336, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752983

RESUMO

Development of the complex human heart is tightly regulated at multiple levels, maintaining multipotency and proliferative state in the embryonic cardiovascular progenitors and thereafter suppressing progenitor characteristics to allow for terminal differentiation and maturation. Small regulatory microRNAs (miRNAs) are at the level of post-transcriptional gene suppressors, which enhance the degradation or decay of their target protein-coding mRNAs. These miRNAs are known to play roles in a large number of biological events, cardiovascular development being no exception. A number of critical cardiac-specific miRNAs have been identified, of which structural developmental defects have been linked to dysregulation of miRNAs in the proliferating cardiac stem cells. These miRNAs present in the stem cell niche are lost when the cardiac progenitors terminally differentiate, resulting in the postnatal mitotic arrest of the heart. Therapeutic applications of these miRNAs extend to the realm of heart failure, whereby the death of heart cells in the ageing heart cannot be replaced due to the arrest of cell division. By utilizing miRNA therapy to control cell cycling, the regenerative potential of matured myocardium can be restored. This review will address the various cardiac progenitor-related miRNAs that control the development and proliferative potential of the heart.


Assuntos
Cardiopatias , Coração/embriologia , MicroRNAs , Miocárdio , Células-Tronco , Transcrição Gênica , Animais , Ciclo Celular , Diferenciação Celular , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/terapia , Humanos , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Miocárdio/metabolismo , Miocárdio/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia
19.
Cell Death Dis ; 10(11): 802, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641105

RESUMO

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disorder that is commonly caused by the m.3243A > G mutation in the MT-TL1 gene encoding for mitochondrial tRNA(Leu(UUR)). While clinical studies reported cerebral infarcts, atherosclerotic lesions, and altered vasculature and stroke-like episodes (SLE) in MELAS patients, it remains unclear how this mutation causes the onset and subsequent progression of the disease. Here, we report that in addition to endothelial dysfunction, diseased endothelial cells (ECs) were found to be pro-atherogenic and pro-inflammation due to high levels of ROS and Ox-LDLs, and high basal expressions of VCAM-1, in particular isoform b, respectively. Consistently, more monocytes were found to adhere to MELAS ECs as compared to the isogenic control, suggesting the presence of an atherosclerosis-like pathology in MELAS. Notably, these disease phenotypes in endothelial cells can be effectively reversed by anti-oxidant treatment suggesting that the lowering of ROS is critical for treating patients with MELAS syndrome.


Assuntos
Aterosclerose/fisiopatologia , Células Endoteliais/metabolismo , Inflamação/fisiopatologia , Síndrome MELAS/genética , Mitocôndrias/metabolismo , Feminino , Humanos , Masculino , Mutação
20.
Theranostics ; 9(2): 311-323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809276

RESUMO

Motor neuron diversification and regionalization are important hallmarks of spinal cord development and rely on fine spatiotemporal release of molecular cues. Here, we present a dedicated platform to engineer complex molecular profiles for directed neuronal differentiation. Methods: The technology, termed microhexagon interlace for generation of versatile and fine gradients (microHIVE), leverages on an interlocking honeycomb lattice of microstructures to dynamically pattern molecular profiles at a high spatial resolution. By packing the microhexagons as a divergent, mirrored array, the platform not only enables maximal mixing efficiency but also maintains a small device footprint. Results: Employing the microHIVE platform, we developed optimized profiles of growth factors to induce rostral-caudal patterning of spinal motor neurons, and directed stem cell differentiation in situ into a spatial continuum of different motor neuron subtypes. Conclusions: The differentiated cells showed progressive RNA and protein signatures, consistent with that of representative brachial, thoracic and lumbar regions of the human spinal cord. The microHIVE platform can thus be utilized to develop advanced biomimetic systems for the study of diseases in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Microfluídica/métodos , Neurônios Motores/fisiologia , Células-Tronco/fisiologia , Técnicas de Cultura de Células/instrumentação , Humanos , Microfluídica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...